Code: EE3T6

## II B. Tech - I Semester - Regular Examinations - January 2014

## NUMERICAL METHODS WITH C PROGRAMMING (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours

Marks: 5x14=70

Answer any FIVE questions. All questions carry equal marks

1 a) Solve the following system of linear equations by Gauss elimination method.

7 M

$$5x+3y+4z=23$$
  
 $2x+6y+7z=35$   
 $6x+9y+10z=54$ 

- b) Write an algorithm for Gauss-Seidal iteration method for solving set of simultaneous equations.

  7 M
- 2 a) Use the Givens method to find the eigenvalues of the tridiagonal matrix.7 M

$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

b) Write a corresponding C program to find the numerically largest eigenvalue of a square matrix using power method.

7 M

- 3 a) Find a real root of the equation xe<sup>x</sup> cos x = 0 using
   Newton Raphson method.
   7 M
  - b) Find a real root for  $e^x \sin x = 1$  using Regulafalsi method.

    7 M
- 4 a) Prove the following operator relations i.)  $\nabla = \delta E^{-1/2}$ ii.)  $\delta = \Delta (1 + \Delta)^{-\frac{1}{2}} = \nabla (1 - \nabla)^{-\frac{1}{2}}$ iii.)  $\Delta + \nabla = \frac{\Delta}{\nabla} - \frac{\nabla}{\Delta}$ 
  - b) From the table given below find the value of y when x=23 by using Lagrange's interpolation. 8 M

| X    | 10  | 15  | 20  | 25  | 30  |
|------|-----|-----|-----|-----|-----|
| f(x) | 2.2 | 2.6 | 3.0 | 3.3 | 3.6 |

- 5 a) Write an algorithm of Trapezoidal rule method. 7 M
  - b) Evaluate  $\int_0^6 \frac{1}{2x+3} dx$  by using Simpson's 1/3 rule take number of subintervals n=6.
- 6 a) Solve  $\frac{dy}{dx} = y x^2$ , y(0) = 1 by Picard's method. Hence find the value of y(0.1).

b) Find by Taylor's series method the value of y at x=0.1 and x=0.2 to five places of decimals from

$$y' = x^2y - 1, y(0) = 1.$$
 7 M

7 a) Estimate the production for the year 2010, by fitting a straight line to the following data: 7 M

| Year       | 2003 | 2004 | 2005 | 2006 | 2007 |
|------------|------|------|------|------|------|
| production | 5    | 8    | 14   | 12   | 13   |

b) An experiment gave the following results:

7 M

| V | 350 | 400 | 500 | 600 |
|---|-----|-----|-----|-----|
| t | 61  | 26  | 7   | 26  |

It is known that v and t are connected by the relation  $v = at^b$ . Find the best possible values of a and b.

8 a) Solve by difference methods the boundary-value problem

$$y'' + y = 0$$
,  $y(0) = 0$ ,  $y(1) = 1$   
Take h=1/4 and solve the resulting system. 7 M

b) Solve the equation

$$\frac{\partial \mathbf{u}}{\partial t} = \frac{\partial^2 \mathbf{u}}{\partial t^2}$$

Subject to the conditions

$$u(x,0) = \sin \pi x, 0 \le x \le 1; u(0,t) = u(1,t) = 0.$$

Carry out computations for two levels, taking

$$h=1/3$$
,  $k=1/36$ .